metadata
license: mit
tags:
- generated_from_trainer
base_model: indigo-ai/BERTino
model-index:
- name: predict-perception-bertino-cause-none
results: []
predict-perception-bertino-cause-none
This model is a fine-tuned version of indigo-ai/BERTino on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1988
- R2: 0.4467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 20
- eval_batch_size: 8
- seed: 1996
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 47
Training results
Training Loss | Epoch | Step | Validation Loss | R2 |
---|---|---|---|---|
0.56 | 1.0 | 14 | 0.3460 | 0.0372 |
0.3752 | 2.0 | 28 | 0.3082 | 0.1423 |
0.147 | 3.0 | 42 | 0.2299 | 0.3603 |
0.0961 | 4.0 | 56 | 0.3254 | 0.0944 |
0.0859 | 5.0 | 70 | 0.2650 | 0.2625 |
0.0735 | 6.0 | 84 | 0.2430 | 0.3237 |
0.042 | 7.0 | 98 | 0.2567 | 0.2856 |
0.0328 | 8.0 | 112 | 0.2092 | 0.4180 |
0.028 | 9.0 | 126 | 0.2262 | 0.3706 |
0.0237 | 10.0 | 140 | 0.2170 | 0.3960 |
0.0235 | 11.0 | 154 | 0.2137 | 0.4054 |
0.0195 | 12.0 | 168 | 0.2009 | 0.4409 |
0.0217 | 13.0 | 182 | 0.2001 | 0.4431 |
0.0176 | 14.0 | 196 | 0.2123 | 0.4091 |
0.0226 | 15.0 | 210 | 0.2076 | 0.4224 |
0.019 | 16.0 | 224 | 0.1920 | 0.4657 |
0.0122 | 17.0 | 238 | 0.2301 | 0.3598 |
0.0121 | 18.0 | 252 | 0.2092 | 0.4178 |
0.0112 | 19.0 | 266 | 0.2038 | 0.4329 |
0.0081 | 20.0 | 280 | 0.2008 | 0.4411 |
0.0079 | 21.0 | 294 | 0.1930 | 0.4631 |
0.0083 | 22.0 | 308 | 0.2076 | 0.4222 |
0.0061 | 23.0 | 322 | 0.2036 | 0.4334 |
0.0057 | 24.0 | 336 | 0.1986 | 0.4472 |
0.0059 | 25.0 | 350 | 0.2079 | 0.4215 |
0.0082 | 26.0 | 364 | 0.2125 | 0.4087 |
0.0093 | 27.0 | 378 | 0.2096 | 0.4168 |
0.0061 | 28.0 | 392 | 0.2129 | 0.4076 |
0.005 | 29.0 | 406 | 0.2054 | 0.4284 |
0.0058 | 30.0 | 420 | 0.2024 | 0.4368 |
0.006 | 31.0 | 434 | 0.1999 | 0.4437 |
0.0047 | 32.0 | 448 | 0.1917 | 0.4666 |
0.0046 | 33.0 | 462 | 0.2000 | 0.4435 |
0.005 | 34.0 | 476 | 0.2003 | 0.4425 |
0.0041 | 35.0 | 490 | 0.2057 | 0.4276 |
0.0037 | 36.0 | 504 | 0.1985 | 0.4476 |
0.0049 | 37.0 | 518 | 0.2029 | 0.4353 |
0.0031 | 38.0 | 532 | 0.1963 | 0.4539 |
0.0031 | 39.0 | 546 | 0.1957 | 0.4554 |
0.0031 | 40.0 | 560 | 0.1962 | 0.4540 |
0.0029 | 41.0 | 574 | 0.2000 | 0.4433 |
0.0028 | 42.0 | 588 | 0.1986 | 0.4473 |
0.0035 | 43.0 | 602 | 0.1972 | 0.4514 |
0.0029 | 44.0 | 616 | 0.1984 | 0.4479 |
0.0036 | 45.0 | 630 | 0.2005 | 0.4422 |
0.0033 | 46.0 | 644 | 0.1994 | 0.4452 |
0.0029 | 47.0 | 658 | 0.1988 | 0.4467 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0