gorkemgoknar
commited on
Commit
•
3e96cae
1
Parent(s):
cfe96f6
Update README.md
Browse files
README.md
CHANGED
@@ -1,19 +1,147 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
0 4.373726 5.398773 0.264228 221.134857 02:56
|
11 |
-
1 4.264910 5.344171 0.267870 209.384140 02:54
|
12 |
|
|
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
thumbnail:
|
5 |
+
tags:
|
6 |
+
- gpt2
|
7 |
+
- turkish
|
8 |
|
9 |
+
license: Apache 2.0
|
10 |
+
datasets:
|
11 |
+
- wikipedia-turkish
|
12 |
+
metrics:
|
13 |
+
- perplexity
|
14 |
+
- accuracy
|
15 |
|
16 |
+
widget:
|
17 |
+
- text: "Bu yazıyı bir bilgisayar yazdı. Yazarken"
|
18 |
+
context: ""
|
19 |
+
- text: "İnternete kolay erişim sayesinde dünya daha da küçüldü. Bunun sonucunda"
|
20 |
+
context: ""
|
21 |
+
|
22 |
+
---
|
23 |
|
24 |
+
# MyModel
|
25 |
|
26 |
+
## Model description
|
|
|
|
|
27 |
|
28 |
+
This is a GPT2-Small English based model finetuned and additionaly trainied with Wikipedia Articles in Turkish as of 28-10-2020
|
29 |
|
30 |
+
Work has been done on Pierre Guillou tutorial as on this page.
|
31 |
+
(https://github.com/piegu/fastai-projects/blob/master/finetuning-English-GPT2-any-language-Portuguese-HuggingFace-fastaiv2.ipynb)
|
32 |
|
33 |
+
Code is converted to work with Fastai 2.X .
|
34 |
+
|
35 |
+
Using Google Colab for training.
|
36 |
+
|
37 |
+
Additional tutorial and source will be in https://github.com/gorkemgoknar in later stage.
|
38 |
+
|
39 |
+
Current accuracy 28.9 % , Perplexity : 86.71
|
40 |
+
|
41 |
+
Models are available:
|
42 |
+
|
43 |
+
* [gpt2-small-tuned-tr] (https://huggingface.co/gorkemgoknar/gpt2-small-turkish)
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
#### How to use
|
48 |
+
|
49 |
+
#### Install
|
50 |
+
|
51 |
+
```python
|
52 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
53 |
+
import torch
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("gorkemgoknar/gpt2-small-turkish")
|
56 |
+
model = AutoModelWithLMHead.from_pretrained("gorkemgoknar/gpt2-small-turkish")
|
57 |
+
|
58 |
+
# Get sequence length max of 1024
|
59 |
+
tokenizer.model_max_length=1024
|
60 |
+
|
61 |
+
model.eval() # disable dropout (or leave in train mode to finetune)
|
62 |
+
|
63 |
+
```
|
64 |
+
|
65 |
+
#### Generate 1 word
|
66 |
+
```python
|
67 |
+
# input sequence
|
68 |
+
text = "Bu yazıyı bilgisayar yazdı."
|
69 |
+
inputs = tokenizer(text, return_tensors="pt")
|
70 |
+
|
71 |
+
# model output
|
72 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
73 |
+
loss, logits = outputs[:2]
|
74 |
+
predicted_index = torch.argmax(logits[0, -1, :]).item()
|
75 |
+
predicted_text = tokenizer.decode([predicted_index])
|
76 |
+
|
77 |
+
# results
|
78 |
+
print('input text:', text)
|
79 |
+
print('predicted text:', predicted_text)
|
80 |
+
|
81 |
+
# input text: Quem era Jim Henson? Jim Henson era um
|
82 |
+
# predicted text: homem
|
83 |
+
|
84 |
+
```
|
85 |
+
|
86 |
+
#### Generate Full Sequence
|
87 |
+
```python
|
88 |
+
# input sequence
|
89 |
+
text = "Bu yazıyı bilgisayar yazdı."
|
90 |
+
inputs = tokenizer(text, return_tensors="pt")
|
91 |
+
|
92 |
+
# model output using Top-k sampling text generation method
|
93 |
+
sample_outputs = model.generate(inputs.input_ids,
|
94 |
+
pad_token_id=50256,
|
95 |
+
do_sample=True,
|
96 |
+
max_length=50, # put the token number you want
|
97 |
+
top_k=40,
|
98 |
+
num_return_sequences=1)
|
99 |
+
|
100 |
+
# generated sequence
|
101 |
+
for i, sample_output in enumerate(sample_outputs):
|
102 |
+
print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist())))
|
103 |
+
|
104 |
+
# >> Generated text
|
105 |
+
# Quem era Jim Henson? Jim Henson era um executivo de televisão e diretor de um grande estúdio de cinema mudo chamado Selig,
|
106 |
+
# depois que o diretor de cinema mudo Georges Seuray dirigiu vários filmes para a Columbia e o estúdio.
|
107 |
+
|
108 |
+
```
|
109 |
+
|
110 |
+
#### Limitations and bias
|
111 |
+
|
112 |
+
The training data used for this model come from Turkish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral.
|
113 |
+
|
114 |
+
|
115 |
+
## Training data
|
116 |
+
|
117 |
+
Wikipedia Turkish article dump as of 28-10-2020
|
118 |
+
|
119 |
+
## Training procedure
|
120 |
+
|
121 |
+
|
122 |
+
## Eval results
|
123 |
+
|
124 |
+
#epoch train_loss valid_loss accuracy perplexity time
|
125 |
+
#0 6.922922 6.653488 0.148002 775.484253 2:26:41 (freeze last 1)
|
126 |
+
#1 4.799396 4.633522 0.277028 102.875755 3:03:38 (freeze last 1)
|
127 |
+
#2 4.610025 4.462641 0.289884 86.716248 2:34:50 (freeze last 2)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
### BibTeX entry and citation info
|
132 |
+
|
133 |
+
```bibtex
|
134 |
+
@misc{gorkemgoknar,
|
135 |
+
author = {{Gorkem Goknar}},
|
136 |
+
title = {{Kina sea urchin regions in NZ}},
|
137 |
+
howpublished = {\url{http://fs.fish.govt.nz/Page.aspx?pk=7\&sc=SUR}},
|
138 |
+
note = {Online; accessed 29 January 2014}
|
139 |
+
|
140 |
+
@inproceedings{...,
|
141 |
+
year={2020},
|
142 |
+
title={Facebook FAIR's WMT19 News Translation Task Submission},
|
143 |
+
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey},
|
144 |
+
booktitle={Proc. of WMT},
|
145 |
+
}
|
146 |
+
```
|
147 |
|