gopikachu's picture
End of training
e1bcecd verified
|
raw
history blame
3.15 kB
metadata
language:
  - hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - konnakol
metrics:
  - wer
model-index:
  - name: Whisper Hi - Gopika
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Konnakol
          type: konnakol
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.026845637583892617

Whisper Hi - Gopika

This model is a fine-tuned version of openai/whisper-medium on the Konnakol dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2424
  • Wer: 0.0268
  • Cer: 0.0281

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.6928 8.3333 50 0.7108 0.0593 0.0502
0.1456 16.6667 100 0.1978 0.0503 0.0448
0.0104 25.0 150 0.1970 0.0291 0.0293
0.0145 33.3333 200 0.2114 0.0503 0.0387
0.0123 41.6667 250 0.2174 0.0515 0.0511
0.0086 50.0 300 0.2339 0.0246 0.0263
0.0077 58.3333 350 0.2737 0.0336 0.0303
0.0132 66.6667 400 0.1764 0.0268 0.0269
0.005 75.0 450 0.2107 0.0336 0.0339
0.0207 83.3333 500 0.2167 0.4955 0.4702
0.0153 91.6667 550 0.1948 0.0358 0.0342
0.013 100.0 600 0.1882 0.0257 0.0230
0.001 108.3333 650 0.2405 0.0302 0.0324
0.0018 116.6667 700 0.2377 0.0302 0.0290
0.0 125.0 750 0.2385 0.0268 0.0281
0.0 133.3333 800 0.2398 0.0268 0.0281
0.0 141.6667 850 0.2409 0.0268 0.0281
0.0 150.0 900 0.2418 0.0268 0.0281
0.0 158.3333 950 0.2422 0.0268 0.0281
0.0 166.6667 1000 0.2424 0.0268 0.0281

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1