ymir95's picture
Upload folder using huggingface_hub
fd4f7f4
|
raw
history blame
2.19 kB
---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- 'no'
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
- yue
tags:
- audio
- automatic-speech-recognition
license: mit
library_name: ctranslate2
---
# Whisper large-v3 model for CTranslate2
This repository contains the conversion of Whisper `large-v3` to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format.
This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper).
## Example
```python
from faster_whisper import WhisperModel
model = WhisperModel("flyingleafe/faster-whisper-large-v3")
segments, info = model.transcribe("audio.mp3")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
## Conversion details
The original model was converted the following way:
```
# use Transformers convertation to HF format
python transformers/src/transformers/models/whisper/convert_openai_to_hf.py \
--checkpoint_path large-v3 --pytorch_dump_folder_path ./whisper-large-v3 --convert_tokenizer True
# ... some manual convertation to get `tokenizer.json` via `WhisperTokenizerFast` class ...
ct2-transformers-converter --model ./whisper-large-v3 --output_dir faster-whisper-large-v2 \
--copy_files tokenizer.json preprocessor_config.json --quantization float16
```
Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html).