Update README.md
Browse files
README.md
CHANGED
@@ -31,197 +31,60 @@ model-index:
|
|
31 |
value: 0.2388758782201405
|
32 |
---
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
|
|
|
38 |
|
|
|
39 |
|
40 |
-
## Model Details
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
- **Shared by [optional]:** [More Information Needed]
|
51 |
-
- **Model type:** [More Information Needed]
|
52 |
-
- **Language(s) (NLP):** [More Information Needed]
|
53 |
-
- **License:** [More Information Needed]
|
54 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
- **Paper [optional]:** [More Information Needed]
|
62 |
-
- **Demo [optional]:** [More Information Needed]
|
63 |
|
64 |
-
##
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
## Bias, Risks, and Limitations
|
87 |
-
|
88 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
### Recommendations
|
93 |
-
|
94 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
95 |
-
|
96 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
97 |
-
|
98 |
-
## How to Get Started with the Model
|
99 |
-
|
100 |
-
Use the code below to get started with the model.
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Training Details
|
105 |
-
|
106 |
-
### Training Data
|
107 |
-
|
108 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
-
|
112 |
-
### Training Procedure
|
113 |
-
|
114 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
115 |
-
|
116 |
-
#### Preprocessing [optional]
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
|
121 |
-
#### Training Hyperparameters
|
122 |
-
|
123 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
124 |
-
|
125 |
-
#### Speeds, Sizes, Times [optional]
|
126 |
-
|
127 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
## Evaluation
|
132 |
-
|
133 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
134 |
-
|
135 |
-
### Testing Data, Factors & Metrics
|
136 |
-
|
137 |
-
#### Testing Data
|
138 |
-
|
139 |
-
<!-- This should link to a Dataset Card if possible. -->
|
140 |
-
|
141 |
-
[More Information Needed]
|
142 |
-
|
143 |
-
#### Factors
|
144 |
-
|
145 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
-
|
149 |
-
#### Metrics
|
150 |
-
|
151 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
### Results
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
#### Summary
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
## Model Examination [optional]
|
164 |
-
|
165 |
-
<!-- Relevant interpretability work for the model goes here -->
|
166 |
-
|
167 |
-
[More Information Needed]
|
168 |
-
|
169 |
-
## Environmental Impact
|
170 |
-
|
171 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
172 |
-
|
173 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
174 |
-
|
175 |
-
- **Hardware Type:** [More Information Needed]
|
176 |
-
- **Hours used:** [More Information Needed]
|
177 |
-
- **Cloud Provider:** [More Information Needed]
|
178 |
-
- **Compute Region:** [More Information Needed]
|
179 |
-
- **Carbon Emitted:** [More Information Needed]
|
180 |
-
|
181 |
-
## Technical Specifications [optional]
|
182 |
-
|
183 |
-
### Model Architecture and Objective
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
### Compute Infrastructure
|
188 |
-
|
189 |
-
[More Information Needed]
|
190 |
-
|
191 |
-
#### Hardware
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
#### Software
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
## Citation [optional]
|
200 |
-
|
201 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
202 |
-
|
203 |
-
**BibTeX:**
|
204 |
-
|
205 |
-
[More Information Needed]
|
206 |
-
|
207 |
-
**APA:**
|
208 |
-
|
209 |
-
[More Information Needed]
|
210 |
-
|
211 |
-
## Glossary [optional]
|
212 |
-
|
213 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
214 |
-
|
215 |
-
[More Information Needed]
|
216 |
-
|
217 |
-
## More Information [optional]
|
218 |
-
|
219 |
-
[More Information Needed]
|
220 |
-
|
221 |
-
## Model Card Authors [optional]
|
222 |
-
|
223 |
-
[More Information Needed]
|
224 |
-
|
225 |
-
## Model Card Contact
|
226 |
-
|
227 |
-
[More Information Needed]
|
|
|
31 |
value: 0.2388758782201405
|
32 |
---
|
33 |
|
34 |
+
Official repository: https://github.com/gonglinyuan/ast_t5
|
35 |
|
36 |
+
# AST-T5
|
37 |
|
38 |
+
Paper: [AST-T5: Structure-Aware Pretraining for Code Generation and Understanding](https://arxiv.org/abs/2401.03003)
|
39 |
|
40 |
+
Authors: [Linyuan Gong](https://github.com/gonglinyuan), Mostafa Elhoushi, Alvin Cheung
|
41 |
|
|
|
42 |
|
43 |
+
## Use the AST-T5 Model
|
44 |
|
45 |
+
The AST-T5 model is readily available on the Huggingface Model Hub ([https://huggingface.co/gonglinyuan/ast_t5_base](https://huggingface.co/gonglinyuan/ast_t5_base)). To use our AST-T5 model in PyTorch (Python 3.8+, PyTorch 1.12+ and transformers 4.36+ are prerequisites), refer to the code snippet below:
|
46 |
|
47 |
+
```python
|
48 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
49 |
|
50 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("gonglinyuan/ast_t5_base", trust_remote_code=True)
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("gonglinyuan/ast_t5_base", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
input_text = r'''def fibonacci(n):
|
54 |
+
"""return n-th fibonacci number.
|
55 |
+
fibonacci[0] = 0
|
56 |
+
fibonacci[1] = 1
|
57 |
+
"""'''
|
58 |
+
inputs = tokenizer(
|
59 |
+
[input_text + "<sen001>"], # T5-style sentinel token for completion
|
60 |
+
max_length=1024,
|
61 |
+
truncation=True,
|
62 |
+
add_special_tokens=True,
|
63 |
+
return_tensors="pt"
|
64 |
+
).input_ids
|
65 |
+
outputs = model.generate(inputs, max_length=256, do_sample=False)
|
66 |
|
67 |
+
output_code = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
68 |
+
output_code = output_code[len("<sen001>"):] # Remove the sentinel token
|
69 |
+
print(input_text + output_code)
|
70 |
+
```
|
71 |
|
72 |
+
Note: The `ast_t5_base` model is not an instruct model. It works best with specific prompts like function signatures or comments, rather than general instructions such as "Please write a code to calculate the n-th fibonacci number".
|
|
|
|
|
73 |
|
74 |
+
## Citation
|
75 |
|
76 |
+
If you find the code and models useful for your research, please cite the following paper:
|
77 |
|
78 |
+
```
|
79 |
+
@article{
|
80 |
+
ast_t5,
|
81 |
+
title={{AST}-{T}5: Structure-Aware Pretraining for Code Generation and Understanding},
|
82 |
+
url={http://arxiv.org/abs/2401.03003},
|
83 |
+
DOI={10.48550/arXiv.2401.03003},
|
84 |
+
note={arXiv:2401.03003 [cs]},
|
85 |
+
number={arXiv:2401.03003},
|
86 |
+
publisher={arXiv},
|
87 |
+
author={Gong, Linyuan and Elhoushi, Mostafa and Cheung, Alvin},
|
88 |
+
year={2024}, month=jan
|
89 |
+
}
|
90 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|