metadata
language:
- nl
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large V2
results: []
Whisper Large V2
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3047
- Wer: 8.8078
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5556 | 0.49 | 30 | 0.3116 | 14.7321 |
0.2736 | 0.98 | 60 | 0.2567 | 12.1736 |
0.1361 | 1.48 | 90 | 0.2769 | 10.2024 |
0.1364 | 1.97 | 120 | 0.2525 | 9.1643 |
0.0582 | 2.46 | 150 | 0.2734 | 10.9049 |
0.0568 | 2.95 | 180 | 0.2669 | 9.2796 |
0.0289 | 3.44 | 210 | 0.2841 | 8.7973 |
0.0206 | 3.93 | 240 | 0.2877 | 8.7868 |
0.0107 | 4.43 | 270 | 0.3009 | 8.8393 |
0.0089 | 4.92 | 300 | 0.3047 | 8.8078 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0