goldfish-models commited on
Commit
bd70de6
·
verified ·
1 Parent(s): 3f3aaff

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ language:
5
+ - yor
6
+ datasets:
7
+ - allenai/nllb
8
+ - allenai/MADLAD-400
9
+ - cis-lmu/Glot500
10
+ - castorini/afriberta-corpus
11
+ - allenai/c4
12
+ - legacy-datasets/wikipedia
13
+ - csebuetnlp/xlsum
14
+ - oscar-corpus/OSCAR-2109
15
+ library_name: transformers
16
+ pipeline_tag: text-generation
17
+ tags:
18
+ - goldfish
19
+
20
+ ---
21
+
22
+ # yor_latn_100mb
23
+
24
+ Goldfish is a suite of monolingual language models trained for 350 languages.
25
+ This model is the <b>Yoruba</b> (Latin script) model trained on 100MB of data, after accounting for an estimated byte premium of 1.37; content-matched text in Yoruba takes on average 1.37x as many UTF-8 bytes to encode as English.
26
+ The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
27
+
28
+ Note: yor_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).
29
+
30
+ All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://github.com/tylerachang/goldfish/blob/main/goldfish_paper_20240815.pdf).
31
+
32
+ Training code and sample usage: https://github.com/tylerachang/goldfish
33
+
34
+ Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
35
+
36
+ ## Model details:
37
+
38
+ To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/model_details.json.
39
+ All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
40
+ Details for this model specifically:
41
+
42
+ * Architecture: gpt2
43
+ * Parameters: 124770816
44
+ * Maximum sequence length: 512 tokens
45
+ * Training text data (raw): 137.50MB
46
+ * Training text data (byte premium scaled): 100.005MB
47
+ * Training tokens: 31010816 (x10 epochs)
48
+ * Vocabulary size: 50000
49
+ * Compute cost: 1.58317887356928e+17 FLOPs or ~15.0 NVIDIA A6000 GPU hours
50
+
51
+ Training datasets (percentages prior to deduplication):
52
+ * 46.33023%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
53
+ * 25.88587%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
54
+ * 23.42418%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus), [AfroMAFT](https://zenodo.org/record/6990611#.Y0-yU-xBw-Q), [Earthlings](https://publicdata.canterbury.ac.nz/Research/Geocorpus/CCGLU_v5.0/), [Wortschatz Leipzig Data](https://wortschatz.uni-leipzig.de/en/download), [MC4](https://huggingface.co/datasets/allenai/c4), [Menyo20K](https://github.com/uds-lsv/menyo-20k_MT), [OSCAR](https://oscar-project.org/), [TeDDi](https://github.com/MorphDiv/TeDDi_sample), [W2C](https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0022-6133-9), [Wikipedia Hugging Face](https://huggingface.co/datasets/legacy-datasets/wikipedia), [XLSum](https://huggingface.co/datasets/csebuetnlp/xlsum)
55
+ * 2.89553%: [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus)
56
+ * 0.95515%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
57
+ * 0.49782%: [eBible](https://ebible.org/find/)
58
+ * 0.01122%: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)
59
+
60
+
61
+ ## Citation
62
+
63
+ If you use this model, please cite:
64
+
65
+ ```
66
+ @article{chang-etal-2024-goldfish,
67
+ title={Goldfish: Monolingual Language Models for 350 Languages},
68
+ author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
69
+ journal={Preprint},
70
+ year={2024},
71
+ }
72
+ ```