|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: gokulsrinivasagan/distilbert_lda_5_v1 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: distilbert_lda_5_v1_stsb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE STSB |
|
type: glue |
|
args: stsb |
|
metrics: |
|
- name: Spearmanr |
|
type: spearmanr |
|
value: 0.771403455042343 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert_lda_5_v1_stsb |
|
|
|
This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_5_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_5_v1) on the GLUE STSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9149 |
|
- Pearson: 0.7745 |
|
- Spearmanr: 0.7714 |
|
- Combined Score: 0.7730 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| |
|
| 2.4726 | 1.0 | 23 | 1.7690 | 0.5073 | 0.5038 | 0.5056 | |
|
| 1.3012 | 2.0 | 46 | 1.3896 | 0.7004 | 0.7125 | 0.7064 | |
|
| 0.8284 | 3.0 | 69 | 0.9456 | 0.7721 | 0.7714 | 0.7718 | |
|
| 0.5881 | 4.0 | 92 | 0.9819 | 0.7670 | 0.7671 | 0.7670 | |
|
| 0.4537 | 5.0 | 115 | 0.9149 | 0.7745 | 0.7714 | 0.7730 | |
|
| 0.3479 | 6.0 | 138 | 1.1078 | 0.7723 | 0.7729 | 0.7726 | |
|
| 0.2723 | 7.0 | 161 | 0.9508 | 0.7747 | 0.7725 | 0.7736 | |
|
| 0.2507 | 8.0 | 184 | 0.9537 | 0.7685 | 0.7651 | 0.7668 | |
|
| 0.2101 | 9.0 | 207 | 1.0716 | 0.7639 | 0.7611 | 0.7625 | |
|
| 0.1713 | 10.0 | 230 | 1.0893 | 0.7716 | 0.7719 | 0.7718 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|