gokulsrinivasagan's picture
End of training
ff529ab verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - spearmanr
model-index:
  - name: bert_uncased_L-4_H-256_A-4_stsb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE STSB
          type: glue
          args: stsb
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.8541619713648296

bert_uncased_L-4_H-256_A-4_stsb

This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6283
  • Pearson: 0.8545
  • Spearmanr: 0.8542
  • Combined Score: 0.8543

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
5.5773 1.0 23 2.7412 0.3845 0.3343 0.3594
2.5793 2.0 46 1.9158 0.7727 0.7557 0.7642
1.5767 3.0 69 0.9541 0.7706 0.7473 0.7590
0.9474 4.0 92 0.7628 0.8133 0.8070 0.8101
0.7258 5.0 115 0.6785 0.8383 0.8429 0.8406
0.6162 6.0 138 0.6756 0.8436 0.8439 0.8437
0.5455 7.0 161 0.6391 0.8480 0.8504 0.8492
0.4912 8.0 184 0.6582 0.8461 0.8472 0.8466
0.4443 9.0 207 0.6561 0.8472 0.8482 0.8477
0.3995 10.0 230 0.6429 0.8504 0.8503 0.8503
0.3689 11.0 253 0.6283 0.8545 0.8542 0.8543
0.3418 12.0 276 0.6592 0.8520 0.8520 0.8520
0.3302 13.0 299 0.6507 0.8524 0.8530 0.8527
0.319 14.0 322 0.6484 0.8528 0.8526 0.8527
0.2863 15.0 345 0.6397 0.8526 0.8527 0.8526
0.2774 16.0 368 0.6379 0.8559 0.8555 0.8557

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3