gokulsrinivasagan's picture
End of training
9dcf860 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld-5
metrics:
  - accuracy
model-index:
  - name: bert_tiny_lda_5_v1_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld-5
          type: gokulsrinivasagan/processed_book_corpus-ld-5
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6857676426031905

bert_tiny_lda_5_v1_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld-5 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8600
  • Accuracy: 0.6858

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 160
  • eval_batch_size: 160
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.2508 0.7025 10000 7.0913 0.1639
5.6868 1.4051 20000 5.0071 0.4074
4.0487 2.1076 30000 3.6967 0.5617
3.7657 2.8102 40000 3.4422 0.5989
3.6336 3.5127 50000 3.3142 0.6176
3.5449 4.2153 60000 3.2372 0.6291
3.4893 4.9178 70000 3.1788 0.6376
3.4397 5.6203 80000 3.1367 0.6442
3.4066 6.3229 90000 3.1054 0.6491
3.3758 7.0254 100000 3.0734 0.6534
3.3548 7.7280 110000 3.0504 0.6571
3.3302 8.4305 120000 3.0304 0.6599
3.3087 9.1331 130000 3.0157 0.6620
3.2942 9.8356 140000 2.9982 0.6654
3.2799 10.5381 150000 2.9831 0.6672
3.271 11.2407 160000 2.9750 0.6687
3.2545 11.9432 170000 2.9624 0.6703
3.2444 12.6458 180000 2.9493 0.6723
3.2336 13.3483 190000 2.9428 0.6731
3.2254 14.0509 200000 2.9316 0.6746
3.2143 14.7534 210000 2.9231 0.6759
3.2058 15.4560 220000 2.9154 0.6772
3.2014 16.1585 230000 2.9095 0.6780
3.1923 16.8610 240000 2.9047 0.6788
3.1846 17.5636 250000 2.8982 0.6797
3.1797 18.2661 260000 2.8922 0.6805
3.1768 18.9687 270000 2.8886 0.6813
3.1696 19.6712 280000 2.8828 0.6822
3.1656 20.3738 290000 2.8787 0.6826
3.1581 21.0763 300000 2.8756 0.6834
3.1566 21.7788 310000 2.8690 0.6842
3.1508 22.4814 320000 2.8671 0.6845
3.1496 23.1839 330000 2.8648 0.6849
3.1475 23.8865 340000 2.8612 0.6853
3.1459 24.5890 350000 2.8586 0.6859

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3