metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_tiny_lda_20_v1_book
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_tiny_lda_20_v1_book_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8735345040811279
- name: F1
type: f1
value: 0.8332844240112166
bert_tiny_lda_20_v1_book_qqp
This model is a fine-tuned version of gokulsrinivasagan/bert_tiny_lda_20_v1_book on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.2950
- Accuracy: 0.8735
- F1: 0.8333
- Combined Score: 0.8534
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.4144 | 1.0 | 1422 | 0.3439 | 0.8441 | 0.7835 | 0.8138 |
0.3055 | 2.0 | 2844 | 0.3083 | 0.8620 | 0.8218 | 0.8419 |
0.2498 | 3.0 | 4266 | 0.2950 | 0.8735 | 0.8333 | 0.8534 |
0.2046 | 4.0 | 5688 | 0.3069 | 0.8750 | 0.8280 | 0.8515 |
0.1669 | 5.0 | 7110 | 0.3275 | 0.8777 | 0.8379 | 0.8578 |
0.1361 | 6.0 | 8532 | 0.3683 | 0.8778 | 0.8399 | 0.8589 |
0.1117 | 7.0 | 9954 | 0.3594 | 0.8801 | 0.8414 | 0.8608 |
0.0936 | 8.0 | 11376 | 0.4124 | 0.8779 | 0.8415 | 0.8597 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3