bert_base_lda_wnli / README.md
gokulsrinivasagan's picture
End of training
ae001c0 verified
|
raw
history blame
2.79 kB
metadata
library_name: transformers
language:
  - en
base_model: gokulsrinivasagan/bert_base_lda
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert_base_lda_wnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5633802816901409

bert_base_lda_wnli

This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6864
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1638 1.0 3 1.4608 0.5634
1.0198 2.0 6 1.1097 0.5634
1.1474 3.0 9 0.8995 0.5634
0.8846 4.0 12 0.8201 0.4366
0.7886 5.0 15 0.6994 0.4366
0.738 6.0 18 0.7087 0.5634
0.7195 7.0 21 0.7214 0.4366
0.7036 8.0 24 0.6931 0.5634
0.6935 9.0 27 0.6896 0.5634
0.6941 10.0 30 0.6926 0.5634
0.6949 11.0 33 0.6936 0.4366
0.6959 12.0 36 0.6911 0.5634
0.6927 13.0 39 0.6864 0.5634
0.6928 14.0 42 0.6893 0.5634
0.6958 15.0 45 0.6896 0.5634
0.6936 16.0 48 0.6911 0.5634
0.6955 17.0 51 0.6911 0.5634
0.6939 18.0 54 0.6906 0.5634

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3