bert_base_lda_5_qqp / README.md
gokulsrinivasagan's picture
End of training
b9602df verified
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_5
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_base_lda_5_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.6318327974276527
- name: F1
type: f1
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_lda_5_qqp
This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_5](https://huggingface.co/gokulsrinivasagan/bert_base_lda_5) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6569
- Accuracy: 0.6318
- F1: 0.0
- Combined Score: 0.3159
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:--------------:|
| 0.6631 | 1.0 | 1422 | 0.6578 | 0.6318 | 0.0 | 0.3159 |
| 0.6589 | 2.0 | 2844 | 0.6569 | 0.6318 | 0.0 | 0.3159 |
| 0.6587 | 3.0 | 4266 | 0.6586 | 0.6318 | 0.0 | 0.3159 |
| 0.6585 | 4.0 | 5688 | 0.6574 | 0.6318 | 0.0 | 0.3159 |
| 0.6585 | 5.0 | 7110 | 0.6574 | 0.6318 | 0.0 | 0.3159 |
| 0.6585 | 6.0 | 8532 | 0.6580 | 0.6318 | 0.0 | 0.3159 |
| 0.6585 | 7.0 | 9954 | 0.6573 | 0.6318 | 0.0 | 0.3159 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3