|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: gokulsrinivasagan/bert_base_lda_50_v1 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: bert_base_lda_50_v1_stsb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE STSB |
|
type: glue |
|
args: stsb |
|
metrics: |
|
- name: Spearmanr |
|
type: spearmanr |
|
value: 0.5589090761362828 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_base_lda_50_v1_stsb |
|
|
|
This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_50_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_50_v1) on the GLUE STSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6371 |
|
- Pearson: 0.5607 |
|
- Spearmanr: 0.5589 |
|
- Combined Score: 0.5598 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| |
|
| 2.6627 | 1.0 | 23 | 2.5606 | 0.0619 | 0.0680 | 0.0649 | |
|
| 1.9634 | 2.0 | 46 | 2.0866 | 0.3208 | 0.2992 | 0.3100 | |
|
| 1.5146 | 3.0 | 69 | 1.9855 | 0.4821 | 0.4690 | 0.4756 | |
|
| 1.0707 | 4.0 | 92 | 2.3493 | 0.4693 | 0.4790 | 0.4741 | |
|
| 0.8577 | 5.0 | 115 | 1.7066 | 0.5352 | 0.5293 | 0.5322 | |
|
| 0.6288 | 6.0 | 138 | 1.6371 | 0.5607 | 0.5589 | 0.5598 | |
|
| 0.5403 | 7.0 | 161 | 1.6740 | 0.5636 | 0.5593 | 0.5614 | |
|
| 0.4198 | 8.0 | 184 | 1.7393 | 0.5655 | 0.5612 | 0.5634 | |
|
| 0.3618 | 9.0 | 207 | 1.6963 | 0.5446 | 0.5344 | 0.5395 | |
|
| 0.3216 | 10.0 | 230 | 1.6674 | 0.5594 | 0.5517 | 0.5555 | |
|
| 0.2733 | 11.0 | 253 | 2.0050 | 0.5558 | 0.5493 | 0.5526 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|