gokulsrinivasagan's picture
End of training
c939ca3 verified
metadata
library_name: transformers
language:
  - en
base_model: gokulsrinivasagan/bert_base_lda_20_v1
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert_base_lda_20_v1_wnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5633802816901409

bert_base_lda_20_v1_wnli

This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_20_v1 on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6815
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8433 1.0 3 0.7335 0.4366
0.7419 2.0 6 0.7790 0.4366
0.7237 3.0 9 0.6986 0.5634
0.7156 4.0 12 0.7406 0.4507
0.7143 5.0 15 0.6858 0.5634
0.6989 6.0 18 0.6855 0.5634
0.6949 7.0 21 0.6932 0.5070
0.6949 8.0 24 0.6815 0.5634
0.6963 9.0 27 0.6960 0.4930
0.6932 10.0 30 0.6830 0.5352
0.6989 11.0 33 0.6838 0.5352
0.6969 12.0 36 0.7047 0.4930
0.7032 13.0 39 0.6939 0.5070

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3