metadata
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_20_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_base_lda_20_v1_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.840563937670047
- name: F1
type: f1
value: 0.7909721771839938
bert_base_lda_20_v1_qqp
This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_20_v1 on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.3612
- Accuracy: 0.8406
- F1: 0.7910
- Combined Score: 0.8158
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.4706 | 1.0 | 1422 | 0.4144 | 0.7976 | 0.6849 | 0.7412 |
0.3635 | 2.0 | 2844 | 0.3808 | 0.8274 | 0.7774 | 0.8024 |
0.2981 | 3.0 | 4266 | 0.3612 | 0.8406 | 0.7910 | 0.8158 |
0.2419 | 4.0 | 5688 | 0.4087 | 0.8491 | 0.7909 | 0.8200 |
0.1933 | 5.0 | 7110 | 0.4482 | 0.8506 | 0.7908 | 0.8207 |
0.1514 | 6.0 | 8532 | 0.4312 | 0.8535 | 0.8018 | 0.8276 |
0.1208 | 7.0 | 9954 | 0.5434 | 0.8498 | 0.8041 | 0.8270 |
0.097 | 8.0 | 11376 | 0.5605 | 0.8532 | 0.8022 | 0.8277 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3