gokulsrinivasagan's picture
End of training
4c8c6f1 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-base-uncased_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7867647058823529
          - name: F1
            type: f1
            value: 0.8481675392670157

bert-base-uncased_mrpc

This model is a fine-tuned version of google-bert/bert-base-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4455
  • Accuracy: 0.7868
  • F1: 0.8482
  • Combined Score: 0.8175

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.5933 1.0 15 0.5066 0.7745 0.8351 0.8048
0.4605 2.0 30 0.4455 0.7868 0.8482 0.8175
0.31 3.0 45 0.5169 0.8162 0.8777 0.8469
0.1871 4.0 60 0.4473 0.8407 0.8862 0.8634
0.1453 5.0 75 0.5061 0.8235 0.8672 0.8453
0.0963 6.0 90 0.5724 0.8284 0.8797 0.8541
0.0515 7.0 105 0.7238 0.8333 0.8863 0.8598

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3