gokuls's picture
End of training
cb082e1 verified
|
raw
history blame
2.7 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-960h-speech-commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8066546762589928

wav2vec2-base-960h-speech-commands

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1612
  • Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.745 1.0 824 1.9237 0.7648
0.5664 2.0 1648 1.1424 0.7878
0.4337 3.0 2472 1.1234 0.8013
0.3346 4.0 3296 1.1040 0.8035
0.2683 5.0 4120 1.3128 0.7905
0.3498 6.0 4944 1.2172 0.7972
0.2556 7.0 5768 1.1906 0.7986
0.226 8.0 6592 1.1081 0.8044
0.2317 9.0 7416 1.1068 0.8049
0.1144 10.0 8240 1.1612 0.8067
0.2143 11.0 9064 1.1577 0.8031
0.1668 12.0 9888 1.1343 0.8058
0.2504 13.0 10712 1.0583 0.8067
0.218 14.0 11536 1.0677 0.8026
0.1025 15.0 12360 1.0690 0.8053

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1