metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_logit_kd_qnli_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.6163280248947465
mobilebert_sa_GLUE_Experiment_logit_kd_qnli_256
This model is a fine-tuned version of google/mobilebert-uncased on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.9616
- Accuracy: 0.6163
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1009 | 1.0 | 819 | 0.9865 | 0.5988 |
1.019 | 2.0 | 1638 | 0.9616 | 0.6163 |
0.9743 | 3.0 | 2457 | 0.9672 | 0.6134 |
0.942 | 4.0 | 3276 | 0.9724 | 0.6070 |
0.9189 | 5.0 | 4095 | 0.9827 | 0.6017 |
0.898 | 6.0 | 4914 | 1.0090 | 0.5958 |
0.8798 | 7.0 | 5733 | 1.0317 | 0.5967 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2