gokuls's picture
End of training
e74e456
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: hbertv1-massive-logit_KD-tiny
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8465322183964584

hbertv1-massive-logit_KD-tiny

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5468
  • Accuracy: 0.8465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0471 1.0 180 3.2580 0.2258
2.9727 2.0 360 2.3478 0.3778
2.3183 3.0 540 1.8643 0.5081
1.9162 4.0 720 1.5331 0.6375
1.6284 5.0 900 1.3079 0.6931
1.4163 6.0 1080 1.1495 0.7241
1.263 7.0 1260 1.0287 0.7437
1.1491 8.0 1440 0.9566 0.7575
1.0652 9.0 1620 0.8881 0.7644
0.9661 10.0 1800 0.8426 0.7801
0.9077 11.0 1980 0.7980 0.7796
0.8466 12.0 2160 0.7675 0.7919
0.7996 13.0 2340 0.7422 0.7934
0.7605 14.0 2520 0.7323 0.7954
0.7156 15.0 2700 0.6864 0.8067
0.6867 16.0 2880 0.6730 0.8131
0.6493 17.0 3060 0.6548 0.8160
0.6245 18.0 3240 0.6495 0.8136
0.6038 19.0 3420 0.6282 0.8224
0.57 20.0 3600 0.6123 0.8224
0.556 21.0 3780 0.6020 0.8308
0.5334 22.0 3960 0.5943 0.8298
0.5101 23.0 4140 0.5778 0.8323
0.4948 24.0 4320 0.5740 0.8337
0.4824 25.0 4500 0.5772 0.8337
0.4728 26.0 4680 0.5712 0.8342
0.4596 27.0 4860 0.5691 0.8337
0.4436 28.0 5040 0.5670 0.8396
0.4367 29.0 5220 0.5542 0.8367
0.4249 30.0 5400 0.5512 0.8406
0.4117 31.0 5580 0.5450 0.8387
0.4051 32.0 5760 0.5468 0.8465
0.4 33.0 5940 0.5464 0.8401
0.3939 34.0 6120 0.5451 0.8446
0.3801 35.0 6300 0.5387 0.8441
0.3708 36.0 6480 0.5353 0.8421
0.3686 37.0 6660 0.5320 0.8455

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0