gokuls's picture
End of training
0366f64
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: hbertv1-massive-logit_KD-mini
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8598130841121495

hbertv1-massive-logit_KD-mini

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4640
  • Accuracy: 0.8598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5547 1.0 180 2.3028 0.4481
1.9374 2.0 360 1.2686 0.6513
1.2845 3.0 540 0.9328 0.7324
0.9981 4.0 720 0.7684 0.7836
0.8273 5.0 900 0.6834 0.7998
0.7068 6.0 1080 0.6369 0.8062
0.6043 7.0 1260 0.5804 0.8205
0.535 8.0 1440 0.5475 0.8396
0.4763 9.0 1620 0.5247 0.8396
0.4245 10.0 1800 0.5122 0.8470
0.3794 11.0 1980 0.5038 0.8460
0.3424 12.0 2160 0.5057 0.8465
0.3194 13.0 2340 0.4977 0.8485
0.2897 14.0 2520 0.4973 0.8534
0.2688 15.0 2700 0.4714 0.8574
0.255 16.0 2880 0.4763 0.8480
0.2401 17.0 3060 0.4856 0.8510
0.2286 18.0 3240 0.4713 0.8578
0.2138 19.0 3420 0.4753 0.8500
0.2022 20.0 3600 0.4641 0.8544
0.1937 21.0 3780 0.4640 0.8598
0.1802 22.0 3960 0.4788 0.8505
0.1719 23.0 4140 0.4520 0.8593
0.17 24.0 4320 0.4703 0.8564
0.159 25.0 4500 0.4620 0.8554
0.1566 26.0 4680 0.4825 0.8549

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0