metadata
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv2_new_pretrain_w_init__sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8245412844036697
hBERTv2_new_pretrain_w_init__sst2
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new_wt_init on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.6070
- Accuracy: 0.8245
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3399 | 1.0 | 527 | 0.4105 | 0.8360 |
0.2098 | 2.0 | 1054 | 0.4837 | 0.8222 |
0.1578 | 3.0 | 1581 | 0.5173 | 0.8119 |
0.1219 | 4.0 | 2108 | 0.5737 | 0.8337 |
0.0978 | 5.0 | 2635 | 0.5374 | 0.8165 |
0.0803 | 6.0 | 3162 | 0.6070 | 0.8245 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3