gokuls's picture
End of training
188a5ea
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv2_new_pretrain_rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
config: rte
split: validation
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.5595667870036101
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv2_new_pretrain_rte
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6853
- Accuracy: 0.5596
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7512 | 1.0 | 20 | 0.6929 | 0.4982 |
| 0.7204 | 2.0 | 40 | 0.6908 | 0.5271 |
| 0.701 | 3.0 | 60 | 0.6853 | 0.5596 |
| 0.6315 | 4.0 | 80 | 0.7081 | 0.5632 |
| 0.5807 | 5.0 | 100 | 0.8746 | 0.5343 |
| 0.4079 | 6.0 | 120 | 0.8831 | 0.5632 |
| 0.3077 | 7.0 | 140 | 1.0779 | 0.5487 |
| 0.2453 | 8.0 | 160 | 1.1810 | 0.5415 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3