metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv2_new_pretrain_rte
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
config: rte
split: validation
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.4729241877256318
hBERTv2_new_pretrain_rte
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new on the GLUE RTE dataset. It achieves the following results on the evaluation set:
- Loss: 0.7371
- Accuracy: 0.4729
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
9.1657 | 1.0 | 20 | 0.7371 | 0.4729 |
9.3188 | 2.0 | 40 | 0.7859 | 0.5271 |
9.3339 | 3.0 | 60 | 0.9236 | 0.5271 |
9.7488 | 4.0 | 80 | 0.9142 | 0.5271 |
9.1542 | 5.0 | 100 | 0.8327 | 0.5271 |
9.1755 | 6.0 | 120 | 0.8222 | 0.5271 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3