gokuls's picture
End of training
f9f9fce
---
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: hBERTv2_new_pretrain_48_stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
config: stsb
split: validation
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.4028161409951644
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hBERTv2_new_pretrain_48_stsb
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0734
- Pearson: 0.4184
- Spearmanr: 0.4028
- Combined Score: 0.4106
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
| 2.2864 | 1.0 | 45 | 3.0157 | 0.1270 | 0.1171 | 0.1220 |
| 1.9895 | 2.0 | 90 | 2.7270 | 0.1553 | 0.1550 | 0.1552 |
| 1.7101 | 3.0 | 135 | 2.8223 | 0.2806 | 0.2657 | 0.2732 |
| 1.2973 | 4.0 | 180 | 2.5938 | 0.3375 | 0.3280 | 0.3328 |
| 1.0658 | 5.0 | 225 | 2.3835 | 0.3771 | 0.3629 | 0.3700 |
| 0.8454 | 6.0 | 270 | 2.5028 | 0.3637 | 0.3479 | 0.3558 |
| 0.6773 | 7.0 | 315 | 2.3937 | 0.3594 | 0.3538 | 0.3566 |
| 0.5678 | 8.0 | 360 | 2.6813 | 0.3803 | 0.3802 | 0.3803 |
| 0.4746 | 9.0 | 405 | 2.5546 | 0.3874 | 0.3695 | 0.3784 |
| 0.4113 | 10.0 | 450 | 2.2077 | 0.4112 | 0.4038 | 0.4075 |
| 0.3585 | 11.0 | 495 | 2.2846 | 0.4096 | 0.3972 | 0.4034 |
| 0.3288 | 12.0 | 540 | 2.4155 | 0.4012 | 0.3848 | 0.3930 |
| 0.2745 | 13.0 | 585 | 2.3635 | 0.4004 | 0.3924 | 0.3964 |
| 0.2579 | 14.0 | 630 | 2.0734 | 0.4184 | 0.4028 | 0.4106 |
| 0.2309 | 15.0 | 675 | 2.3462 | 0.4171 | 0.4026 | 0.4099 |
| 0.2037 | 16.0 | 720 | 2.2598 | 0.4225 | 0.4090 | 0.4157 |
| 0.1806 | 17.0 | 765 | 2.2458 | 0.4116 | 0.3916 | 0.4016 |
| 0.1785 | 18.0 | 810 | 2.3296 | 0.4088 | 0.3903 | 0.3996 |
| 0.1582 | 19.0 | 855 | 2.3369 | 0.4033 | 0.3868 | 0.3951 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3