metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv2_new_pretrain_48_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8216176106851348
- name: F1
type: f1
value: 0.7561536380849337
hBERTv2_new_pretrain_48_qqp
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new_48 on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.4029
- Accuracy: 0.8216
- F1: 0.7562
- Combined Score: 0.7889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.5044 | 1.0 | 2843 | 0.4468 | 0.7865 | 0.6961 | 0.7413 |
0.4102 | 2.0 | 5686 | 0.4359 | 0.7992 | 0.6935 | 0.7464 |
0.3553 | 3.0 | 8529 | 0.4127 | 0.8080 | 0.7105 | 0.7592 |
0.3122 | 4.0 | 11372 | 0.4029 | 0.8216 | 0.7562 | 0.7889 |
0.2756 | 5.0 | 14215 | 0.4481 | 0.8228 | 0.7518 | 0.7873 |
0.2479 | 6.0 | 17058 | 0.4778 | 0.8268 | 0.7633 | 0.7951 |
0.223 | 7.0 | 19901 | 0.4425 | 0.8158 | 0.7721 | 0.7939 |
0.2028 | 8.0 | 22744 | 0.4705 | 0.8267 | 0.7686 | 0.7977 |
0.183 | 9.0 | 25587 | 0.4908 | 0.8301 | 0.7659 | 0.7980 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3