metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv2_new_pretrain_48_emb_com_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7107843137254902
- name: F1
type: f1
value: 0.8115015974440896
hBERTv2_new_pretrain_48_emb_com_mrpc
This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new_emb_compress_48 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5857
- Accuracy: 0.7108
- F1: 0.8115
- Combined Score: 0.7611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6593 | 1.0 | 29 | 0.6031 | 0.6789 | 0.7863 | 0.7326 |
0.6335 | 2.0 | 58 | 0.6834 | 0.6275 | 0.7043 | 0.6659 |
0.5907 | 3.0 | 87 | 0.5857 | 0.7108 | 0.8115 | 0.7611 |
0.5875 | 4.0 | 116 | 0.6222 | 0.6495 | 0.7223 | 0.6859 |
0.5292 | 5.0 | 145 | 0.6143 | 0.6838 | 0.7854 | 0.7346 |
0.4529 | 6.0 | 174 | 0.7419 | 0.6299 | 0.7135 | 0.6717 |
0.3827 | 7.0 | 203 | 0.7416 | 0.6593 | 0.7513 | 0.7053 |
0.3061 | 8.0 | 232 | 0.8274 | 0.6593 | 0.7574 | 0.7084 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3