hBERTv1_sst2 / README.md
gokuls's picture
update model card README.md
98c0481
|
raw
history blame
2.11 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_sst2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8061926605504587

hBERTv1_sst2

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1 on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6409
  • Accuracy: 0.8062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6905 1.0 264 0.6919 0.5252
0.6609 2.0 528 0.6088 0.6915
0.4152 3.0 792 0.4525 0.7901
0.2611 4.0 1056 0.4627 0.8096
0.1953 5.0 1320 0.4894 0.8073
0.1588 6.0 1584 0.6002 0.8016
0.1336 7.0 1848 0.6467 0.8062
0.1117 8.0 2112 0.6409 0.8062

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.10.1
  • Tokenizers 0.13.2