metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_new_pretrain_w_init__wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
config: wnli
split: validation
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5633802816901409
hBERTv1_new_pretrain_w_init__wnli
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init on the GLUE WNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.6855
- Accuracy: 0.5634
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
12.3688 | 1.0 | 5 | 6.2236 | 0.5634 |
3.5093 | 2.0 | 10 | 0.7491 | 0.4366 |
1.9112 | 3.0 | 15 | 2.5146 | 0.5634 |
1.4995 | 4.0 | 20 | 1.8104 | 0.4366 |
1.3047 | 5.0 | 25 | 0.6936 | 0.5634 |
1.4685 | 6.0 | 30 | 0.7440 | 0.5634 |
0.924 | 7.0 | 35 | 1.1066 | 0.4366 |
0.8423 | 8.0 | 40 | 0.8221 | 0.4366 |
0.8166 | 9.0 | 45 | 0.6855 | 0.5634 |
0.7552 | 10.0 | 50 | 0.7181 | 0.5634 |
0.7515 | 11.0 | 55 | 0.6951 | 0.5634 |
0.7127 | 12.0 | 60 | 0.7140 | 0.4366 |
0.7112 | 13.0 | 65 | 0.6901 | 0.5634 |
0.6976 | 14.0 | 70 | 0.7009 | 0.4366 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3