gokuls's picture
End of training
917e000
|
raw
history blame
2.57 kB
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_new_pretrain_w_init__wnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          config: wnli
          split: validation
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5633802816901409

hBERTv1_new_pretrain_w_init__wnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6855
  • Accuracy: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
12.3688 1.0 5 6.2236 0.5634
3.5093 2.0 10 0.7491 0.4366
1.9112 3.0 15 2.5146 0.5634
1.4995 4.0 20 1.8104 0.4366
1.3047 5.0 25 0.6936 0.5634
1.4685 6.0 30 0.7440 0.5634
0.924 7.0 35 1.1066 0.4366
0.8423 8.0 40 0.8221 0.4366
0.8166 9.0 45 0.6855 0.5634
0.7552 10.0 50 0.7181 0.5634
0.7515 11.0 55 0.6951 0.5634
0.7127 12.0 60 0.7140 0.4366
0.7112 13.0 65 0.6901 0.5634
0.6976 14.0 70 0.7009 0.4366

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3