metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_new_pretrain_w_init__sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8038990825688074
hBERTv1_new_pretrain_w_init__sst2
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4606
- Accuracy: 0.8039
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.363 | 1.0 | 527 | 0.4606 | 0.8039 |
0.2256 | 2.0 | 1054 | 0.6466 | 0.8119 |
0.1754 | 3.0 | 1581 | 0.5101 | 0.8177 |
0.1394 | 4.0 | 2108 | 0.4921 | 0.8177 |
0.1111 | 5.0 | 2635 | 0.5110 | 0.8200 |
0.0937 | 6.0 | 3162 | 0.6468 | 0.8211 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3