metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: hBERTv1_new_pretrain_w_init__mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6838235294117647
- name: F1
type: f1
value: 0.8122270742358079
hBERTv1_new_pretrain_w_init__mrpc
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.6237
- Accuracy: 0.6838
- F1: 0.8122
- Combined Score: 0.7480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
3.2785 | 1.0 | 29 | 0.6238 | 0.6838 | 0.8122 | 0.7480 |
0.7343 | 2.0 | 58 | 0.6786 | 0.6838 | 0.8122 | 0.7480 |
0.6377 | 3.0 | 87 | 0.6245 | 0.6838 | 0.8122 | 0.7480 |
0.6353 | 4.0 | 116 | 0.6237 | 0.6838 | 0.8122 | 0.7480 |
0.6344 | 5.0 | 145 | 0.6244 | 0.6838 | 0.8122 | 0.7480 |
0.6314 | 6.0 | 174 | 0.6324 | 0.6838 | 0.8122 | 0.7480 |
0.6431 | 7.0 | 203 | 0.6402 | 0.6838 | 0.8122 | 0.7480 |
0.6347 | 8.0 | 232 | 0.6336 | 0.6838 | 0.8122 | 0.7480 |
0.6343 | 9.0 | 261 | 0.6258 | 0.6838 | 0.8122 | 0.7480 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3