metadata
language:
- en
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_new_pretrain_w_init_48_ver2_sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.5091743119266054
hBERTv1_new_pretrain_w_init_48_ver2_sst2
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6941
- Accuracy: 0.5092
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6948 | 1.0 | 1053 | 0.6948 | 0.5092 |
0.6927 | 2.0 | 2106 | 0.6941 | 0.5092 |
0.6879 | 3.0 | 3159 | 0.7005 | 0.5092 |
0.6873 | 4.0 | 4212 | 0.7004 | 0.5092 |
0.6887 | 5.0 | 5265 | 0.7151 | 0.5092 |
0.6871 | 6.0 | 6318 | 0.6975 | 0.5092 |
0.6859 | 7.0 | 7371 | 0.7068 | 0.5092 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1