gokuls's picture
End of training
3b4edb8
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_new_pretrain_48_emb_com_qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          config: qnli
          split: validation
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5983891634632985

hBERTv1_new_pretrain_48_emb_com_qnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_emb_compress_48 on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6611
  • Accuracy: 0.5984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6862 1.0 819 0.6995 0.5513
0.6677 2.0 1638 0.6624 0.5949
0.6553 3.0 2457 0.6611 0.5984
0.6426 4.0 3276 0.6866 0.5762
0.6244 5.0 4095 0.6751 0.5951
0.6136 6.0 4914 0.6903 0.5728
0.6036 7.0 5733 0.7188 0.5731
0.5855 8.0 6552 0.7175 0.5825

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3