|
--- |
|
language: |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: hBERTv1_mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
config: mrpc |
|
split: validation |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6862745098039216 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7999999999999999 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv1_mrpc |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1](https://huggingface.co/gokuls/bert_12_layer_model_v1) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6051 |
|
- Accuracy: 0.6863 |
|
- F1: 0.8000 |
|
- Combined Score: 0.7431 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.6536 | 1.0 | 15 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | |
|
| 0.6275 | 2.0 | 30 | 0.6174 | 0.7010 | 0.8117 | 0.7564 | |
|
| 0.6129 | 3.0 | 45 | 0.6089 | 0.6961 | 0.8182 | 0.7571 | |
|
| 0.6087 | 4.0 | 60 | 0.6062 | 0.6887 | 0.8130 | 0.7508 | |
|
| 0.5939 | 5.0 | 75 | 0.6104 | 0.6863 | 0.7935 | 0.7399 | |
|
| 0.5707 | 6.0 | 90 | 0.6184 | 0.7083 | 0.8183 | 0.7633 | |
|
| 0.5426 | 7.0 | 105 | 0.6051 | 0.6863 | 0.8000 | 0.7431 | |
|
| 0.4819 | 8.0 | 120 | 0.6560 | 0.6936 | 0.8019 | 0.7478 | |
|
| 0.4279 | 9.0 | 135 | 0.6673 | 0.6887 | 0.7678 | 0.7283 | |
|
| 0.3374 | 10.0 | 150 | 0.8092 | 0.6863 | 0.7902 | 0.7382 | |
|
| 0.2789 | 11.0 | 165 | 0.9342 | 0.6887 | 0.7935 | 0.7411 | |
|
| 0.2216 | 12.0 | 180 | 0.9708 | 0.6838 | 0.7810 | 0.7324 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|