gokuls's picture
End of training
c8ee227
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_data_aug_wnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE WNLI
          type: glue
          args: wnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.323943661971831

hBERTv1_data_aug_wnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1 on the GLUE WNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8232
  • Accuracy: 0.3239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6916 1.0 218 0.8232 0.3239
0.5909 2.0 436 2.9065 0.0704
0.3754 3.0 654 4.7671 0.0845
0.2639 4.0 872 5.6922 0.1127
0.1921 5.0 1090 5.9948 0.0845
0.1317 6.0 1308 6.7444 0.0986

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.10.1
  • Tokenizers 0.13.2