metadata
language:
- en
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_data_aug_wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.323943661971831
hBERTv1_data_aug_wnli
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1 on the GLUE WNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.8232
- Accuracy: 0.3239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6916 | 1.0 | 218 | 0.8232 | 0.3239 |
0.5909 | 2.0 | 436 | 2.9065 | 0.0704 |
0.3754 | 3.0 | 654 | 4.7671 | 0.0845 |
0.2639 | 4.0 | 872 | 5.6922 | 0.1127 |
0.1921 | 5.0 | 1090 | 5.9948 | 0.0845 |
0.1317 | 6.0 | 1308 | 6.7444 | 0.0986 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.14.0a0+410ce96
- Datasets 2.10.1
- Tokenizers 0.13.2