gokuls's picture
End of training
83c60ac
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: distilbert_add_GLUE_Experiment_logit_kd_pretrain_qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          config: qnli
          split: validation
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6522057477576423

distilbert_add_GLUE_Experiment_logit_kd_pretrain_qnli

This model is a fine-tuned version of gokuls/distilbert_add_pre-training-complete on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3579
  • Accuracy: 0.6522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4059 1.0 410 0.4016 0.5585
0.3907 2.0 820 0.3735 0.6094
0.3715 3.0 1230 0.3602 0.6480
0.352 4.0 1640 0.3579 0.6522
0.3314 5.0 2050 0.3626 0.6670
0.309 6.0 2460 0.3650 0.6776
0.2865 7.0 2870 0.3799 0.6776
0.2679 8.0 3280 0.3817 0.6903
0.2525 9.0 3690 0.3942 0.6822

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2