metadata
license: apache-2.0
base_model: google/bert_uncased_L-6_H-512_A-8
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: bert_uncased_L-6_H-512_A-8_emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.941
bert_uncased_L-6_H-512_A-8_emotion
This model is a fine-tuned version of google/bert_uncased_L-6_H-512_A-8 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1465
- Accuracy: 0.941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6249 | 1.0 | 250 | 0.1965 | 0.9275 |
0.1782 | 2.0 | 500 | 0.1533 | 0.938 |
0.1245 | 3.0 | 750 | 0.1467 | 0.9365 |
0.0951 | 4.0 | 1000 | 0.1480 | 0.94 |
0.0764 | 5.0 | 1250 | 0.1465 | 0.941 |
0.0634 | 6.0 | 1500 | 0.1594 | 0.94 |
0.0422 | 7.0 | 1750 | 0.2059 | 0.935 |
0.0381 | 8.0 | 2000 | 0.1881 | 0.938 |
0.027 | 9.0 | 2250 | 0.2025 | 0.9405 |
0.0203 | 10.0 | 2500 | 0.2032 | 0.9375 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1