|
--- |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-2_H-128_A-2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- massive |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert_uncased_L-2_H-128_A-2_massive |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: massive |
|
type: massive |
|
config: en-US |
|
split: validation |
|
args: en-US |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6733890801770782 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-2_H-128_A-2_massive |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6807 |
|
- Accuracy: 0.6734 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 33 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 3.8812 | 1.0 | 180 | 3.6329 | 0.2086 | |
|
| 3.4819 | 2.0 | 360 | 3.2331 | 0.3074 | |
|
| 3.1331 | 3.0 | 540 | 2.9025 | 0.3847 | |
|
| 2.8406 | 4.0 | 720 | 2.6372 | 0.4624 | |
|
| 2.6013 | 5.0 | 900 | 2.4211 | 0.5194 | |
|
| 2.4097 | 6.0 | 1080 | 2.2485 | 0.5539 | |
|
| 2.2504 | 7.0 | 1260 | 2.1084 | 0.5898 | |
|
| 2.1234 | 8.0 | 1440 | 1.9968 | 0.6085 | |
|
| 2.0195 | 9.0 | 1620 | 1.9036 | 0.6316 | |
|
| 1.9345 | 10.0 | 1800 | 1.8336 | 0.6463 | |
|
| 1.8616 | 11.0 | 1980 | 1.7722 | 0.6596 | |
|
| 1.8091 | 12.0 | 2160 | 1.7281 | 0.6645 | |
|
| 1.7704 | 13.0 | 2340 | 1.6984 | 0.6685 | |
|
| 1.7431 | 14.0 | 2520 | 1.6807 | 0.6734 | |
|
| 1.7293 | 15.0 | 2700 | 1.6749 | 0.6729 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|