gokuls's picture
End of training
1fcb2c4
metadata
base_model: gokuls/bert_12_layer_model_v3_complete_training_48
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_12_layer_model_v3_48_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8607968519429414

bert_12_layer_model_v3_48_massive

This model is a fine-tuned version of gokuls/bert_12_layer_model_v3_complete_training_48 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9214
  • Accuracy: 0.8608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7608 1.0 180 0.9351 0.7482
0.8417 2.0 360 0.8314 0.7841
0.6057 3.0 540 0.7307 0.8160
0.4715 4.0 720 0.6995 0.8382
0.3766 5.0 900 0.7602 0.8273
0.2933 6.0 1080 0.7537 0.8357
0.2321 7.0 1260 0.7966 0.8426
0.1873 8.0 1440 0.8015 0.8396
0.1447 9.0 1620 0.8281 0.8392
0.1079 10.0 1800 0.8665 0.8446
0.0781 11.0 1980 0.8758 0.8500
0.0573 12.0 2160 0.8646 0.8515
0.0383 13.0 2340 0.9121 0.8603
0.024 14.0 2520 0.8963 0.8593
0.015 15.0 2700 0.9214 0.8608

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1