gokuls's picture
End of training
8d0b2d9
|
raw
history blame
2.53 kB
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: add_BERT_no_pretrain_qqp
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QQP
          type: glue
          config: qqp
          split: validation
          args: qqp
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6823893148651992
          - name: F1
            type: f1
            value: 0.4704523897892697

add_BERT_no_pretrain_qqp

This model is a fine-tuned version of on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5939
  • Accuracy: 0.6824
  • F1: 0.4705
  • Combined Score: 0.5764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.657 1.0 2843 0.6438 0.6490 0.1608 0.4049
0.6273 2.0 5686 0.6302 0.6443 0.1919 0.4181
0.6273 3.0 8529 0.6265 0.6527 0.3602 0.5064
0.6093 4.0 11372 0.5939 0.6824 0.4705 0.5764
0.5932 5.0 14215 0.5962 0.6802 0.4170 0.5486
0.599 6.0 17058 0.5981 0.6757 0.4795 0.5776
0.6063 7.0 19901 0.6511 0.6318 0.0 0.3159
0.6264 8.0 22744 0.6261 0.6532 0.2074 0.4303
0.6348 9.0 25587 0.6774 0.6318 0.0 0.3159

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3