gokuls's picture
End of training
e88f830
|
raw
history blame
3.44 kB
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: add_BERT_no_pretrain_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6838235294117647
          - name: F1
            type: f1
            value: 0.8122270742358079

add_BERT_no_pretrain_mrpc

This model is a fine-tuned version of on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6240
  • Accuracy: 0.6838
  • F1: 0.8122
  • Combined Score: 0.7480

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
1.154 1.0 29 0.6856 0.6838 0.8122 0.7480
0.6781 2.0 58 0.6609 0.6838 0.8122 0.7480
0.6458 3.0 87 0.6348 0.6838 0.8122 0.7480
0.6395 4.0 116 19.6354 0.3186 0.0071 0.1629
1.1486 5.0 145 0.6657 0.6838 0.8122 0.7480
0.6446 6.0 174 0.6277 0.6838 0.8122 0.7480
0.644 7.0 203 0.6242 0.6838 0.8122 0.7480
0.6337 8.0 232 0.6242 0.6838 0.8122 0.7480
0.6388 9.0 261 0.6253 0.6838 0.8122 0.7480
0.634 10.0 290 0.6242 0.6838 0.8122 0.7480
0.6346 11.0 319 0.6264 0.6838 0.8122 0.7480
0.6338 12.0 348 0.6273 0.6838 0.8122 0.7480
0.6343 13.0 377 0.6262 0.6838 0.8122 0.7480
0.6339 14.0 406 0.6240 0.6838 0.8122 0.7480
0.635 15.0 435 0.6244 0.6838 0.8122 0.7480
0.6331 16.0 464 0.6240 0.6838 0.8122 0.7480
0.6328 17.0 493 0.6267 0.6838 0.8122 0.7480
0.6338 18.0 522 0.6257 0.6838 0.8122 0.7480
0.6321 19.0 551 0.6240 0.6838 0.8122 0.7480

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3