gokuls's picture
End of training
16b2f29 verified
metadata
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
datasets:
  - gokuls/wiki_book_corpus_complete_processed_bert_dataset
metrics:
  - accuracy
model-index:
  - name: BERT_pretraining_h_100_wo_deepspeed
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokuls/wiki_book_corpus_complete_processed_bert_dataset
          type: gokuls/wiki_book_corpus_complete_processed_bert_dataset
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.15387755648267093

BERT_pretraining_h_100_wo_deepspeed

This model is a fine-tuned version of bert-large-uncased on the gokuls/wiki_book_corpus_complete_processed_bert_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 5.7778
  • Accuracy: 0.1539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 208
  • eval_batch_size: 208
  • seed: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100000
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.8769 0.36 10000 6.7582 0.1101
6.4647 0.71 20000 6.4764 0.1314
6.3679 1.07 30000 6.3218 0.1407
6.252 1.42 40000 6.2139 0.1454
6.2132 1.78 50000 6.1398 0.1478
6.0407 2.13 60000 6.0774 0.1502
6.0694 2.49 70000 6.0303 0.1516
5.9996 2.84 80000 5.9893 0.1521
5.9166 3.2 90000 5.9553 0.1526
5.8915 3.55 100000 5.9261 0.1530
5.8924 3.91 110000 5.8996 0.1534
5.8972 4.26 120000 5.8814 0.1533
5.8454 4.62 130000 5.8626 0.1532
5.8104 4.97 140000 5.8494 0.1534
5.8461 5.33 150000 5.8378 0.1534
5.8476 5.68 160000 5.8246 0.1536
5.7255 6.04 170000 5.8155 0.1532
5.8431 6.39 180000 5.8068 0.1537
5.7526 6.75 190000 5.7981 0.1537
5.7826 7.1 200000 5.7886 0.1537

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1