metadata
library_name: transformers
tags:
- art
datasets:
- gokaygokay/prompt_description_stable_diffusion_3k
language:
- en
pipeline_tag: text2text-generation
Model Card
Fine tuned EleutherAI/pythia-410m using gokaygokay/prompt_description_stable_diffusion_3k dataset.
Direct Use
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "gokaygokay/phytia410m_desctoprompt"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Your description
test_description = """
View to a rustic terrace filled with pots with autumn flowers and a vine full of red leaves and bunches of grapes.
in the foreground a wooden table with a copious breakfast, coffee, bowls, vases and plates with fruits, nuts, chestnuts, hazelnuts, breads and buns.
"""
prompt_template = """### Description:
{description}
### Prompt:
"""
text = prompt_template.format(description=test_description)
def inference(text, model, tokenizer, max_input_tokens=1000, max_output_tokens=200):
# Tokenize
input_ids = tokenizer.encode(
text,
return_tensors="pt",
truncation=True,
max_length=max_input_tokens
)
# Generate
device = model.device
generated_tokens_with_prompt = model.generate(
input_ids=input_ids.to(device),
max_length=max_output_tokens,
)
# Decode
generated_text_with_prompt = tokenizer.batch_decode(generated_tokens_with_prompt, skip_special_tokens=True)
# Strip the prompt
generated_text_answer = generated_text_with_prompt[0][len(text):]
return generated_text_answer
print("Description input (test):", text)
print("Finetuned model's prompt: ")
print(inference(text, model, tokenizer))