|
--- |
|
library_name: transformers |
|
tags: |
|
- art |
|
datasets: |
|
- gokaygokay/prompt_description_stable_diffusion_3k |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
--- |
|
|
|
# Model Card |
|
|
|
Fine tuned EleutherAI/pythia-410m using gokaygokay/prompt_description_stable_diffusion_3k dataset. |
|
|
|
### Direct Use |
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "gokaygokay/phytia410m_desctoprompt" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
# Your description |
|
test_description = """ |
|
View to a rustic terrace filled with pots with autumn flowers and a vine full of red leaves and bunches of grapes. |
|
in the foreground a wooden table with a copious breakfast, coffee, bowls, vases and plates with fruits, nuts, chestnuts, hazelnuts, breads and buns. |
|
""" |
|
|
|
prompt_template = """### Description: |
|
{description} |
|
|
|
### Prompt: |
|
""" |
|
|
|
text = prompt_template.format(description=test_description) |
|
|
|
def inference(text, model, tokenizer, max_input_tokens=1000, max_output_tokens=200): |
|
# Tokenize |
|
input_ids = tokenizer.encode( |
|
text, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=max_input_tokens |
|
) |
|
|
|
# Generate |
|
device = model.device |
|
generated_tokens_with_prompt = model.generate( |
|
input_ids=input_ids.to(device), |
|
max_length=max_output_tokens, |
|
) |
|
|
|
# Decode |
|
generated_text_with_prompt = tokenizer.batch_decode(generated_tokens_with_prompt, skip_special_tokens=True) |
|
|
|
# Strip the prompt |
|
generated_text_answer = generated_text_with_prompt[0][len(text):] |
|
|
|
return generated_text_answer |
|
|
|
|
|
print("Description input (test):", test_description) |
|
|
|
print("Finetuned model's prompt: ") |
|
print(inference(test_description, model, tokenizer)) |
|
|
|
``` |