gngpostalsrvc's picture
update model card README.md
18fca67
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: BERiT_2000_enriched_optimized
    results: []

BERiT_2000_enriched_optimized

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.5710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.732413659252984e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
6.4676 0.19 500 6.1516
6.0191 0.39 1000 5.8660
5.9008 0.58 1500 5.9956
5.7806 0.77 2000 5.7032
5.6932 0.97 2500 5.6910
6.4953 1.16 3000 6.6394
6.6419 1.36 3500 6.6176
6.6462 1.55 4000 6.5961
6.6402 1.74 4500 6.6224
6.6169 1.94 5000 6.6091
6.6396 2.13 5500 6.6443
6.6599 2.32 6000 6.6150
6.5956 2.52 6500 6.6173
6.6397 2.71 7000 6.6038
6.6261 2.9 7500 6.6214
6.6162 3.1 8000 6.6271
6.6102 3.29 8500 6.5843
6.6116 3.49 9000 6.6044
6.6146 3.68 9500 6.6092
6.5922 3.87 10000 6.6182
6.6246 4.07 10500 6.5832
6.6124 4.26 11000 6.6141
6.6002 4.45 11500 6.6385
6.6015 4.65 12000 6.5984
6.6024 4.84 12500 6.6236
6.6097 5.03 13000 6.6254
6.5937 5.23 13500 6.6154
6.5973 5.42 14000 6.5731
6.6141 5.62 14500 6.6308
6.5976 5.81 15000 6.5824
6.5982 6.0 15500 6.6024
6.6032 6.2 16000 6.5891
6.603 6.39 16500 6.5926
6.6089 6.58 17000 6.6090
6.6067 6.78 17500 6.6137
6.5718 6.97 18000 6.5817
6.6036 7.16 18500 6.6008
6.6001 7.36 19000 6.5571
6.6203 7.55 19500 6.5778
6.6055 7.75 20000 6.5805
6.6168 7.94 20500 6.6099
6.5874 8.13 21000 6.6125
6.5932 8.33 21500 6.5701
6.5984 8.52 22000 6.5719
6.5753 8.71 22500 6.6199
6.599 8.91 23000 6.5756
6.579 9.1 23500 6.5926
6.5805 9.3 24000 6.5623
6.5753 9.49 24500 6.5818
6.5645 9.68 25000 6.5726
6.6094 9.88 25500 6.5710

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.2