|
config: |
|
name: noise |
|
process: |
|
- datasets: |
|
- cache_latents_to_disk: true |
|
caption_dropout_rate: 0.2 |
|
caption_ext: txt |
|
folder_path: /root/lorahub/noise/dataset |
|
resolution: |
|
- 512 |
|
- 768 |
|
- 1024 |
|
shuffle_tokens: false |
|
token_dropout_rate: 0.01 |
|
device: cuda:0 |
|
model: |
|
is_flux: true |
|
name_or_path: black-forest-labs/FLUX.1-dev |
|
quantize: true |
|
text_encoder_bits: 8 |
|
network: |
|
linear: 42 |
|
linear_alpha: 42 |
|
transformer_only: true |
|
type: lora |
|
performance_log_every: 500 |
|
sample: |
|
height: 1024 |
|
neg: '' |
|
prompts: |
|
- white noise, glitch art, [trigger] |
|
- distortions, surreal, ghostly face [trigger] |
|
- distorted faces, static, [trigger] |
|
sample_every: 500 |
|
sample_steps: 25 |
|
sampler: flowmatch |
|
seed: 593146 |
|
walk_seed: true |
|
width: 1024 |
|
save: |
|
dtype: float16 |
|
max_step_saves_to_keep: 3 |
|
save_every: 500 |
|
save_format: diffusers |
|
train: |
|
batch_size: 1 |
|
dtype: bf16 |
|
ema_config: |
|
ema_decay: 0.99 |
|
use_ema: true |
|
gradient_accumulation_steps: 1 |
|
gradient_checkpointing: true |
|
linear_timesteps: true |
|
loss_type: mse |
|
lr: 0.0002 |
|
noise_scheduler: flowmatch |
|
optimizer: adamw8bit |
|
reg_weight: 1 |
|
steps: 1500 |
|
target_noise_multiplier: 1 |
|
train_text_encoder: false |
|
train_unet: true |
|
training_folder: /root/lorahub |
|
trigger_word: in the style of white noise, glitchy |
|
type: sd_trainer |
|
job: extension |
|
meta: |
|
description: is trained on a dataset filled with white noise and glitch art, designed |
|
to explore what visuals can emerge from the chaos. By pushing through the layers |
|
of distortion, it seeks to reveal hidden patterns and unexpected beauty within |
|
the noise. |
|
|