config: name: noise process: - datasets: - cache_latents_to_disk: true caption_dropout_rate: 0.2 caption_ext: txt folder_path: /root/lorahub/noise/dataset resolution: - 512 - 768 - 1024 shuffle_tokens: false token_dropout_rate: 0.01 device: cuda:0 model: is_flux: true name_or_path: black-forest-labs/FLUX.1-dev quantize: true text_encoder_bits: 8 network: linear: 42 linear_alpha: 42 transformer_only: true type: lora performance_log_every: 500 sample: height: 1024 neg: '' prompts: - white noise, glitch art, [trigger] - distortions, surreal, ghostly face [trigger] - distorted faces, static, [trigger] sample_every: 500 sample_steps: 25 sampler: flowmatch seed: 593146 walk_seed: true width: 1024 save: dtype: float16 max_step_saves_to_keep: 3 save_every: 500 save_format: diffusers train: batch_size: 1 dtype: bf16 ema_config: ema_decay: 0.99 use_ema: true gradient_accumulation_steps: 1 gradient_checkpointing: true linear_timesteps: true loss_type: mse lr: 0.0002 noise_scheduler: flowmatch optimizer: adamw8bit reg_weight: 1 steps: 1500 target_noise_multiplier: 1 train_text_encoder: false train_unet: true training_folder: /root/lorahub trigger_word: in the style of white noise, glitchy type: sd_trainer job: extension meta: description: is trained on a dataset filled with white noise and glitch art, designed to explore what visuals can emerge from the chaos. By pushing through the layers of distortion, it seeks to reveal hidden patterns and unexpected beauty within the noise.