metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9262984336356141
- name: Recall
type: recall
value: 0.9454729047458769
- name: F1
type: f1
value: 0.9357874573165653
- name: Accuracy
type: accuracy
value: 0.985636074645317
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0584
- Precision: 0.9263
- Recall: 0.9455
- F1: 0.9358
- Accuracy: 0.9856
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2283 | 1.0 | 878 | 0.0684 | 0.8963 | 0.9320 | 0.9138 | 0.9805 |
0.0454 | 2.0 | 1756 | 0.0634 | 0.9243 | 0.9418 | 0.9330 | 0.9844 |
0.024 | 3.0 | 2634 | 0.0584 | 0.9263 | 0.9455 | 0.9358 | 0.9856 |
Framework versions
- Transformers 4.42.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1