gianvr commited on
Commit
32bd510
·
1 Parent(s): e7b13cb

Initial Commit

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,390 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  <br>
5
  <br>Monday: 426
6
  <br>Tuesday: 2,150
7
  <br>
8
  <br>And the numbers are going to get bigger. https://t.co/fUeg2RL2dl</code> | <code>0.3</code> |
 
9
  <br>
10
  <br>Oil prices resume their march downward as Covid 19 continues to spread
11
  <br>FO cracks very strong
12
  <br>Gasoil cracks strengthen
13
  <br>Light distillate and Kero cracks weaker https://t.co/3mB0p5BSZ5</code> | <code>E-cigarette users and tobacco smokers are more in danger from the new coronavirus than the average healthy person. Here’s why. https://t.co/D1ynRUYFUP</code> | <code>0.3</code> |
 
14
  <br>
15
  <br>Prices of Hand Sanitizers are be</code> | <code>Minister Didiza pleads with the public not to hoard food stuffs durning #Covid_19 as panic buying may affect food prices. @DRDLR_online</code> | <code>0.3</code> |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:13205
11
+ - loss:CosineSimilarityLoss
12
+ widget:
13
+ - source_sentence: COVID 19 Tips for safely online
14
+ sentences:
15
+ - Energy Minister Alexander Novak said on Thursday that may return to oil negotiations
16
+ with Saudi Arabia after talks collapsed last month which coupled with the spread
17
+ of the new dragged prices to their 18 year lows
18
+ - "Low-skilled workers according to the UK Government:\r\r\n\r\r\n- Paramedic\r\r\
19
+ \n- Nurse\r\r\n- Midwife\r\r\n- Social Worker\r\r\n- Carer\r\r\n- Supermarket\
20
+ \ worker\r\r\n- Bus Driver\r\r\n- Nursery teacher\r\r\n\r\r\nWhat a difference\
21
+ \ a month makes...\r\r\n\r\r\n#clapforNHS #ThankYouNHS #coronavirus \r\r\n\r\r\
22
+ \nhttps://t.co/Ne2BaByS6J"
23
+ - "Trump is pushing for higher oil and gas prices at a time when millions of jobless\
24
+ \ Americans are coping with utility bills. This hurts everyone. Pass it on. \r\
25
+ \r\n#Rutgers #PrincetonU #TCNJ #NJIT #StayHome #ThanksForDelivery #coronavirus\
26
+ \ #RutgersNewark #Maga2020 #Newark @CoryBooker https://t.co/Dxp4NWHopU"
27
+ - source_sentence: "As the number of Covid-19 cases continues to rise volunteer groups\
28
+ \ are getting organised to help people in isolation.\r\r\n\r\r\nOne Christchurch\
29
+ \ man got together with a group of friends to shop for those who can't go to the\
30
+ \ supermarket.\r\r\n\r\r\nhttps://t.co/31qJR5wFrR"
31
+ sentences:
32
+ - "TOILET PAPER MYSTERY FINALLY SOLVED!??\r\r\n#ToiletPaperApocalypse #toiletpaper\
33
+ \ #toiletpapercrisis\r\r\n#ToiletPaperPanic #groceries \r\r\n#CoronaVirusUpdates\
34
+ \ #coronavirus #COVID19 \r\r\n\r\r\nWhat Everyone\x92s Getting Wrong About the\
35
+ \ Toilet Paper Shortage by @WillOremus in @MRKR https://t.co/0WvYybajgd"
36
+ - "They've probably caught the #coronavirus via their panic buying &amp; crowding\
37
+ \ together with other people!\r\r\nhttps://t.co/PqAsDM7nMr\r\r\n#Food"
38
+ - '@piersmorgan 20,000 armed services at the ready .......if the doubters have a
39
+ problem believing COVID 19 just take a trip to your local shop ,supermarket there
40
+ is literally nothing on the shelves ...my day off yesterday from the NHS ,I went
41
+ for my basic s'
42
+ - source_sentence: "@IvankaTrump @USDA I'd like to know how much stock you &amp; Jared\
43
+ \ dumped while Daddy was telling the country #Coronavirus was a Dem hoax? \r\r\
44
+ \n\r\r\nBy the way, YOU don't have to tell US, the average, everyday American,\
45
+ \ to be thankful for our food supply chai"
46
+ sentences:
47
+ - "What #CONVID19 safety measures r being taken by online shopping companies &amp;\
48
+ \ their courier partners @amazonIN @Flipkart etc?\r\r\n I fear that shopping packages\
49
+ \ which travel vast distances through flights/trains &amp; r handled by many along\
50
+ \ d way can b potential #coronavirus carriers??"
51
+ - 'Demand at food bank on the rise in Kelowna due to COVID-19 #Kelowna https://t.co/4YWr6BkbBV
52
+ https://t.co/2Bho8KBry8'
53
+ - "The line to go grocery shopping in LA. It\x92s the first day of the official\
54
+ \ lockdown of #California. There is only a limited amount of people inside the\
55
+ \ store at a time. People stocking up on supplies before the weekend. #coronavirus\
56
+ \ @featurestory https://t.co/5NHtHhcUdq"
57
+ - source_sentence: "Get the #facts on #coronavirusau\r\r\n#covid19australia #coronavirus\
58
+ \ #covid19\r\r\n\r\r\nSurveys show less than half of #Australia is #panickbuying\
59
+ \ and other important #statistics for #business\r\r\n https://t.co/dDaiM5KcqY"
60
+ sentences:
61
+ - 'Again for those at the back: sympathy for people panic buying and hoarding essential
62
+ medicines and food items is not a progressive position #auspol #COVID2019AU #COVID2019
63
+ #coronavirus'
64
+ - "Back in early March, in my hometown of Volgograd (Stalingrad), everything was\
65
+ \ calm. No panic. And so, people rushed to buy sugar, buckwheat, canned food,\
66
+ \ toilet paper ...\r\r\n\r\r\n#COVID?19 #COVID19 #coronavirus"
67
+ - "@DrDenaGrayson @mrplannings Look at all these UK MP's putting in 48 hour shifts,\
68
+ \ facing empty supermarket shelves and risking their own lives to help others...\r\
69
+ \r\n\r\r\nOh Wait !!!\r\r\n\r\r\n#SaveOurNurses #PPE #NHSheroes \r\r\n\r\r\n#CoronaVirusUpdate\
70
+ \ #CoronaCrisis"
71
+ - source_sentence: in the doing nicely on the back of as people queue to get their
72
+ Firmly in buy on our system See chart Key above the cloud In Buy below In Sell
73
+ HD
74
+ sentences:
75
+ - I JUST GOT THIS FROM MY VET We recommend that you take preliminary precautions
76
+ and stock up on your pet s food medications and pet related items that you know
77
+ that you will use to avoid problems if more quarantine measures are implemented
78
+ within the community
79
+ - "In times of uncertainty, it is imperative to keep consumers up-to-date with your\
80
+ \ company\x92s weekly updates. If a consumer can\x92t find a place to know if\
81
+ \ you\x92re open or closed, they will find a company who has this in place! \r\
82
+ \r\n\r\r\n#WebsiteTip #CoronaVirus #Business https://t.co/Dj1KV9Pu2B"
83
+ - 'Rapid delivery food order made (since no slots elsewhere for weeks). All seemed
84
+ fine until email listing what was out of stock. They are about to deliver...one
85
+ bottle of orange juice! #coronavirus #panicbuying #whatashitshow'
86
+ ---
87
+
88
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
89
+
90
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
91
+
92
+ ## Model Details
93
+
94
+ ### Model Description
95
+ - **Model Type:** Sentence Transformer
96
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
97
+ - **Maximum Sequence Length:** 256 tokens
98
+ - **Output Dimensionality:** 384 tokens
99
+ - **Similarity Function:** Cosine Similarity
100
+ <!-- - **Training Dataset:** Unknown -->
101
+ <!-- - **Language:** Unknown -->
102
+ <!-- - **License:** Unknown -->
103
+
104
+ ### Model Sources
105
+
106
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
107
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
108
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
109
+
110
+ ### Full Model Architecture
111
+
112
+ ```
113
+ SentenceTransformer(
114
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
115
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
116
+ (2): Normalize()
117
+ )
118
+ ```
119
+
120
+ ## Usage
121
+
122
+ ### Direct Usage (Sentence Transformers)
123
+
124
+ First install the Sentence Transformers library:
125
+
126
+ ```bash
127
+ pip install -U sentence-transformers
128
+ ```
129
+
130
+ Then you can load this model and run inference.
131
+ ```python
132
+ from sentence_transformers import SentenceTransformer
133
+
134
+ # Download from the 🤗 Hub
135
+ model = SentenceTransformer("sentence_transformers_model_id")
136
+ # Run inference
137
+ sentences = [
138
+ 'in the doing nicely on the back of as people queue to get their Firmly in buy on our system See chart Key above the cloud In Buy below In Sell HD',
139
+ 'In times of uncertainty, it is imperative to keep consumers up-to-date with your company\x92s weekly updates. If a consumer can\x92t find a place to know if you\x92re open or closed, they will find a company who has this in place! \r\r\n\r\r\n#WebsiteTip #CoronaVirus #Business https://t.co/Dj1KV9Pu2B',
140
+ 'I JUST GOT THIS FROM MY VET We recommend that you take preliminary precautions and stock up on your pet s food medications and pet related items that you know that you will use to avoid problems if more quarantine measures are implemented within the community',
141
+ ]
142
+ embeddings = model.encode(sentences)
143
+ print(embeddings.shape)
144
+ # [3, 384]
145
+
146
+ # Get the similarity scores for the embeddings
147
+ similarities = model.similarity(embeddings, embeddings)
148
+ print(similarities.shape)
149
+ # [3, 3]
150
+ ```
151
+
152
+ <!--
153
+ ### Direct Usage (Transformers)
154
+
155
+ <details><summary>Click to see the direct usage in Transformers</summary>
156
+
157
+ </details>
158
+ -->
159
+
160
+ <!--
161
+ ### Downstream Usage (Sentence Transformers)
162
+
163
+ You can finetune this model on your own dataset.
164
+
165
+ <details><summary>Click to expand</summary>
166
+
167
+ </details>
168
+ -->
169
+
170
+ <!--
171
+ ### Out-of-Scope Use
172
+
173
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
174
+ -->
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### Unnamed Dataset
193
+
194
+
195
+ * Size: 13,205 training samples
196
+ * Columns: <code>positive</code>, <code>negative</code>, and <code>label</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | positive | negative | label |
199
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
200
+ | type | string | string | float |
201
+ | details | <ul><li>min: 9 tokens</li><li>mean: 55.28 tokens</li><li>max: 113 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 54.08 tokens</li><li>max: 127 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.18</li><li>max: 0.3</li></ul> |
202
+ * Samples:
203
+ | positive | negative | label |
204
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
205
+ | <code>Food redistribution organisations across England will benefit from 3 25 million of government to help them cut food waste and redistribute up to 14 000 tonnes of stock during the outbreak</code> | <code>Unemployment claims made online in Virginia this week:
206
  <br>
207
  <br>Monday: 426
208
  <br>Tuesday: 2,150
209
  <br>
210
  <br>And the numbers are going to get bigger. https://t.co/fUeg2RL2dl</code> | <code>0.3</code> |
211
+ | <code>In today's Oil Price Digest
212
  <br>
213
  <br>Oil prices resume their march downward as Covid 19 continues to spread
214
  <br>FO cracks very strong
215
  <br>Gasoil cracks strengthen
216
  <br>Light distillate and Kero cracks weaker https://t.co/3mB0p5BSZ5</code> | <code>E-cigarette users and tobacco smokers are more in danger from the new coronavirus than the average healthy person. Here’s why. https://t.co/D1ynRUYFUP</code> | <code>0.3</code> |
217
+ | <code>@DrJoeAbah DEAR @LASG @NCDCgov @jidesanwoolu @Omojuwa @aproko_doctor @segalink Alot of clubs and hotels are open with over 50+ crowded ignorant Nigerians. They are not taking the Covid-19 pandemic situation seriously.
218
  <br>
219
  <br>Prices of Hand Sanitizers are be</code> | <code>Minister Didiza pleads with the public not to hoard food stuffs durning #Covid_19 as panic buying may affect food prices. @DRDLR_online</code> | <code>0.3</code> |
220
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
221
+ ```json
222
+ {
223
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
224
+ }
225
+ ```
226
+
227
+ ### Training Hyperparameters
228
+
229
+ #### All Hyperparameters
230
+ <details><summary>Click to expand</summary>
231
+
232
+ - `overwrite_output_dir`: False
233
+ - `do_predict`: False
234
+ - `eval_strategy`: no
235
+ - `prediction_loss_only`: True
236
+ - `per_device_train_batch_size`: 8
237
+ - `per_device_eval_batch_size`: 8
238
+ - `per_gpu_train_batch_size`: None
239
+ - `per_gpu_eval_batch_size`: None
240
+ - `gradient_accumulation_steps`: 1
241
+ - `eval_accumulation_steps`: None
242
+ - `torch_empty_cache_steps`: None
243
+ - `learning_rate`: 5e-05
244
+ - `weight_decay`: 0.0
245
+ - `adam_beta1`: 0.9
246
+ - `adam_beta2`: 0.999
247
+ - `adam_epsilon`: 1e-08
248
+ - `max_grad_norm`: 1.0
249
+ - `num_train_epochs`: 3.0
250
+ - `max_steps`: -1
251
+ - `lr_scheduler_type`: linear
252
+ - `lr_scheduler_kwargs`: {}
253
+ - `warmup_ratio`: 0.0
254
+ - `warmup_steps`: 0
255
+ - `log_level`: passive
256
+ - `log_level_replica`: warning
257
+ - `log_on_each_node`: True
258
+ - `logging_nan_inf_filter`: True
259
+ - `save_safetensors`: True
260
+ - `save_on_each_node`: False
261
+ - `save_only_model`: False
262
+ - `restore_callback_states_from_checkpoint`: False
263
+ - `no_cuda`: False
264
+ - `use_cpu`: False
265
+ - `use_mps_device`: False
266
+ - `seed`: 42
267
+ - `data_seed`: None
268
+ - `jit_mode_eval`: False
269
+ - `use_ipex`: False
270
+ - `bf16`: False
271
+ - `fp16`: False
272
+ - `fp16_opt_level`: O1
273
+ - `half_precision_backend`: auto
274
+ - `bf16_full_eval`: False
275
+ - `fp16_full_eval`: False
276
+ - `tf32`: None
277
+ - `local_rank`: 0
278
+ - `ddp_backend`: None
279
+ - `tpu_num_cores`: None
280
+ - `tpu_metrics_debug`: False
281
+ - `debug`: []
282
+ - `dataloader_drop_last`: False
283
+ - `dataloader_num_workers`: 0
284
+ - `dataloader_prefetch_factor`: None
285
+ - `past_index`: -1
286
+ - `disable_tqdm`: False
287
+ - `remove_unused_columns`: True
288
+ - `label_names`: None
289
+ - `load_best_model_at_end`: False
290
+ - `ignore_data_skip`: False
291
+ - `fsdp`: []
292
+ - `fsdp_min_num_params`: 0
293
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
294
+ - `fsdp_transformer_layer_cls_to_wrap`: None
295
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
296
+ - `deepspeed`: None
297
+ - `label_smoothing_factor`: 0.0
298
+ - `optim`: adamw_torch
299
+ - `optim_args`: None
300
+ - `adafactor`: False
301
+ - `group_by_length`: False
302
+ - `length_column_name`: length
303
+ - `ddp_find_unused_parameters`: None
304
+ - `ddp_bucket_cap_mb`: None
305
+ - `ddp_broadcast_buffers`: False
306
+ - `dataloader_pin_memory`: True
307
+ - `dataloader_persistent_workers`: False
308
+ - `skip_memory_metrics`: True
309
+ - `use_legacy_prediction_loop`: False
310
+ - `push_to_hub`: False
311
+ - `resume_from_checkpoint`: None
312
+ - `hub_model_id`: None
313
+ - `hub_strategy`: every_save
314
+ - `hub_private_repo`: False
315
+ - `hub_always_push`: False
316
+ - `gradient_checkpointing`: False
317
+ - `gradient_checkpointing_kwargs`: None
318
+ - `include_inputs_for_metrics`: False
319
+ - `eval_do_concat_batches`: True
320
+ - `fp16_backend`: auto
321
+ - `push_to_hub_model_id`: None
322
+ - `push_to_hub_organization`: None
323
+ - `mp_parameters`:
324
+ - `auto_find_batch_size`: False
325
+ - `full_determinism`: False
326
+ - `torchdynamo`: None
327
+ - `ray_scope`: last
328
+ - `ddp_timeout`: 1800
329
+ - `torch_compile`: False
330
+ - `torch_compile_backend`: None
331
+ - `torch_compile_mode`: None
332
+ - `dispatch_batches`: None
333
+ - `split_batches`: None
334
+ - `include_tokens_per_second`: False
335
+ - `include_num_input_tokens_seen`: False
336
+ - `neftune_noise_alpha`: None
337
+ - `optim_target_modules`: None
338
+ - `batch_eval_metrics`: False
339
+ - `eval_on_start`: False
340
+ - `eval_use_gather_object`: False
341
+ - `batch_sampler`: batch_sampler
342
+ - `multi_dataset_batch_sampler`: proportional
343
+
344
+ </details>
345
+
346
+ ### Training Logs
347
+ | Epoch | Step | Training Loss |
348
+ |:------:|:----:|:-------------:|
349
+ | 0.3028 | 500 | 0.0851 |
350
+ | 0.6057 | 1000 | 0.0368 |
351
+ | 0.9085 | 1500 | 0.0286 |
352
+ | 1.2114 | 2000 | 0.023 |
353
+ | 1.5142 | 2500 | 0.0189 |
354
+ | 1.8171 | 3000 | 0.0174 |
355
+ | 2.1199 | 3500 | 0.0159 |
356
+ | 2.4228 | 4000 | 0.0142 |
357
+ | 2.7256 | 4500 | 0.013 |
358
+
359
+
360
+ ### Framework Versions
361
+ - Python: 3.10.12
362
+ - Sentence Transformers: 3.2.1
363
+ - Transformers: 4.44.2
364
+ - PyTorch: 2.5.0+cu121
365
+ - Accelerate: 0.34.2
366
+ - Datasets: 3.1.0
367
+ - Tokenizers: 0.19.1
368
+
369
+ ## Citation
370
+
371
+ ### BibTeX
372
+
373
+ #### Sentence Transformers
374
+ ```bibtex
375
+ @inproceedings{reimers-2019-sentence-bert,
376
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
377
+ author = "Reimers, Nils and Gurevych, Iryna",
378
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
379
+ month = "11",
380
+ year = "2019",
381
+ publisher = "Association for Computational Linguistics",
382
+ url = "https://arxiv.org/abs/1908.10084",
383
+ }
384
+ ```
385
+
386
+ <!--
387
+ ## Glossary
388
+
389
+ *Clearly define terms in order to be accessible across audiences.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Authors
394
+
395
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Contact
400
+
401
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
402
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edd0dfda2ba2f67ead4a085f201a40878aa3e35fd7dcd1e5af20ada981773ee5
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fafd941a6c38737fd9d93f842ba2cae5128d3395f03ce915b3a46088bd7a3da1
3
+ size 5432
vocab.txt ADDED
The diff for this file is too large to render. See raw diff