Update README.md
Browse files
README.md
CHANGED
@@ -37,7 +37,22 @@ It achieves the following results on the evaluation set:
|
|
37 |
|
38 |
## Model description
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
## Intended uses & limitations
|
43 |
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
40 |
+
This model was created by importing the dataset of the photos of ECG image into Google Colab from kaggle here: https://www.kaggle.com/datasets/erhmrai/ecg-image-data/data . I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb
|
41 |
+
|
42 |
+
obtaining the following notebook:
|
43 |
+
|
44 |
+
https://colab.research.google.com/drive/1KC6twirtsc7N1kmlwY3IQKVUmSuK7zlh?usp=sharing
|
45 |
+
|
46 |
+
The possible classified data are:
|
47 |
+
<ul>
|
48 |
+
<li>N: Normal beat</li>
|
49 |
+
<li>S: Supraventricular premature beat</li>
|
50 |
+
<li>V: Premature ventricular contraction</li>
|
51 |
+
<li>F: Fusion of ventricular and normal beat</li>
|
52 |
+
<li>Q: Unclassifiable beat</li>
|
53 |
+
<li>M: myocardial infarction</li>
|
54 |
+
</ul>
|
55 |
+
|
56 |
|
57 |
## Intended uses & limitations
|
58 |
|